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Abstract. The algorithmic method introduced by Fokas and Ablowitz to investigate the
transformation properties of Painlevé equations is used to obtain a one-to-one correspondence
between the Painlevé I, II and III equations and certain second-order second degree equations
of Painlev́e type.

1. Introduction

Second-order and first degree equations

y ′′ = F(z, y, y ′) (1.1)

whereF is rational iny ′, algebraic iny and locally analytic inz with the property that the
only movable singularities are poles, that is, the Painlevé property, were classified at the turn
of the century by Painlev́e and his school [22, 15, 17]. Within the Möbius transformation,
they found 50 such equations. Among all these equations, six of them are irreducible and
define classical Painlevé transcendents, PI,PII, . . . ,PVI. The remaining 44 equations are
either solvable in terms of the known functions or can be transformed into one of the six
equations.

Besides the physical importance, the Painlevé equations possess a rich internal structure.
Some of these properties can be summarized as follows. (i) For a certain choice of
parameters, PII–PVI admit a one-parameter family of solutions which are either rational
or expressible in terms of the classical transcendental functions. For example, PII admits a
one-parameter family of solutions expressible in terms of Airy functions [9]. (ii) There are
transformations (B̈acklund or Schlesinger) associated with PII–PVI, these transformations
map the solution of a given Painlevé equation to the solution of the same equation but with
different values of parameters [11, 19, 20]. (iii) PI–PV can be obtained from PVI by the
process of contraction [17]. It is possible to obtain the associated transformations for PII–
PV from the transformation for PVI. (iv) They can be obtained as the similarity reduction
of the nonlinear partial differential equations solvable by inverse scattering transform (IST).
Since the work of Kowalevskaya that was the first connection between the integrability and
the Painlev́e property. (v) PI–PVI can be considered as the isomonodromic conditions of a
suitable linear system of ordinary differential equations with rational coefficients possessing
both regular and irregular singularities [18]. Moreover, the initial value problem of PI–PVI
can be studied by using the inverse monodromy transform (IMT) [12, 13, 21].
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The Riccati equation is the only example of the first-order first degree equation which
has the Painlev́e property. Before the work of Painlevé and his school Fuchs [14, 17]
considered the equation of the form

F(z, y, y ′) = 0 (1.2)

whereF is polynomial iny andy ′ and locally analytic inz, such that the movable branch
points are absent, that is, the generalization of the Riccati equation. Briot and Bouquet [17]
considered the subcase of (1.2), that is, first-order binomial equations of degreem ∈ Z+:

(y ′)m + F(z, y) = 0 (1.3)

whereF(z, y) is a polynomial of degree at most 2m in y. It was found that there are
six types of equation of the form (1.3). But, all these equations are either reducible to a
linear equation or solvable by means of elliptic functions [17]. Second-order binomial-type
equations of degreem > 3

(y ′′)m + F(z, y, y ′) = 0 (1.4)

whereF is polynomial iny andy ′ and locally analytic inz, was considered by Cosgrove
[4]. It was found that there are nine classes. Only two of these classes have arbitrary degree
m and the others have degree three, four and six. As in the case of first-order binomial-
type equations, all these nine classes are solvable in terms of the first, second and fourth
Painlev́e transcendents, elliptic functions or by quadratures. Chazy [3], Garnier [16] and
Bureau [1] considered the third-order differential equations possessing the Painlevé property
of the following form

y ′′′ = F(z, y, y ′, y ′′) (1.5)

whereF is assumed to be rational iny, y ′, y ′′ and locally analytic inz. But, in [1] the
special form ofF(z, y, y ′, y ′′)

F (z, y, y ′, y ′′) = f1(z, y)y
′′ + f2(z, y)(y

′)2+ f3(z, y)y
′ + f4(z, y) (1.6)

where fk(z, y) are polynomials iny of degreek with analytic coefficients inz was
considered. In this class no new Painlevé transcendents were discovered and all of them
are solvable either in terms of the known functions or one of six Painlevé transcendents.

Second-order second degree Painlevé-type equations of the following form

(y ′′)2 = E(z, y, y ′)y ′′ + F(z, y, y ′) (1.7)

whereE andF are assumed to rational iny, y ′ and locally analytic inz was the subject of
the articles [2, 8]. In [2] the special case of (1.7)

y ′′ = M(z, y, y ′)+
√
N(z, y, y ′) (1.8)

was considered, whereM andN are polynomials of degree two and four respectively in
y ′, rational in y and locally analytic inz. Also, in this classification, no new Painlevé
transcendents were found. In [8], the special form,E = 0 and henceF is polynomial in
y andy ′ of (1.7) was considered and that six distinct class of equations were obtained by
using the so-calledα-method. These classes were denoted by SD− I, . . . ,SD−VI and are
solvable in terms of the classical Painlevé transcendents(PI, . . . ,PVI), elliptic functions or
solutions of the linear equations.

Second-order second degree equations of Painlevé type appear in physics [5–7].
Moreover, second degree equations are also important in determining transformation
properties of the Painlevé equations [10, 11]. In [11], the aim was to develop an algorithmic
method to investigate the transformation properties of the Painlevé equations. But, certain
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new second degree equations of Painlevé type related with PIII and PVI were also discussed.
By using the same notation, the algorithm introduced in [11] can be summarized as follows.
Let v(z) be a solution of any of the fifty Painlevé equations, as listed by Gambier [15] and
Ince [17], each of which takes the form

v′′ = P1(v
′)2+ P2v

′ + P3 (1.9)

whereP1, P2, P3 are functions ofv, z and a set of parametersα. The transformation, i.e.
Lie-point discrete symmetry which preserves the Painlevé property of (1.9) of the form
u(z; α̂) = F(v(z;α), z) is the Möbius transformation

u(z; α̂) = a1(z)v + a2(z)

a3(z)v + a4(z)
(1.10)

wherev(z,α) solves (1.9) with the set of parametersα andu(z; α̂) solves (1.9) with the
set of parameterŝα. Lie-point discrete symmetry (1.10) can be generalized by involving
the v′(z;α), i.e. the transformation of the formu(z; α̂) = F(v′(z;α), v(z, α), z). The only
transformation which containsv′ linearly is the one involving the Riccati equation, i.e.

u(z, α̂) = v′ + av2+ bv + c
dv2+ ev + f (1.11)

wherea, b, c, d, e, f are functions ofz only. The aim is to finda, b, c, d, e, f such that
(1.11) defines a one-to-one invertible map between solutionsv of (1.9) and solutionsu of
some second-order equation of the Painlevé type. Let

J = dv2+ ev + f Y = av2+ bv + c (1.12)

then differentiating (1.11) and using (1.9) to replacev′′ and (1.11) to replacev′, one obtains:

Ju′ = [P1J
2− 2dJv − eJ ]u2+ [−2P1JY + P2J + 2avJ

+bJ + 2dvY + eY − (d ′v2+ e′v + f ′)]u+ [P1Y
2− P2Y

+P3− 2avY − bY + a′v2+ b′v + c′]. (1.13)

There are two distinct cases.
(I) Find a, . . . , f such that (1.13) reduces to a linear equation forv,

A(u′, u, z)v + B(u′, u, z) = 0. (1.14)

Having determineda, . . . , f upon substitution ofv = −B/A into (1.11) one can obtain the
equation foru, which will be one of the fifty Painlev́e equations.

(II) Find a, . . . , f such that (1.13) reduces to a quadratic equation forv,

A(u′, u, z)v2+ B(u′, u, z)v + C(u′, u, z) = 0. (1.15)

Then (1.11) yields an equation foru which is quadratic in the second derivative.
As mentioned before in [11] the aim is to obtain the transformation properties of PII–

PVI. Hence, the case I for PII–PV, and case II for PVI was investigated.
In this article, we investigate the transformation of type II to obtain the one-to-one

correspondence between PI, PII, PIII and the second-order second degree Painlevé-type
equations. Some of the second degree equations related with PI–PIII were obtained in [2, 8]
but most of them have not been considered in literature. Instead of having the transformation
of the form (1.11) which is linear inv′, one may use the appropriate transformations related
to

(v′)m +
m∑
j=1

Pj (z, v)(v
′)m−j = 0 m > 1
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where Pj (z, v) is a polynomial in v, which satisfies the Fuchs theorem concerning
the absence of movable critical points [14, 17]. This type of transformations and the
transformations of type II for PIV–PVI will be published elsewhere.

2. Painlev́e I

Let v(z) be a solution of PI

v′′ = 6v2+ z. (2.1)

Then, for PI equation (1.13) takes the form of

[2d2u2− 4adu+ 2a2]v3+ [du′ + 3deu2+ (d ′ − 3ae − 3bd)u− (a′ − 3ab + 6)]v2

+[eu′ + (2df + e2)u2+ (e′ − 2af − 2be − 2cd)u− (b′ − b2− 2ac)]v

+[f u′ + ef u2+ (f ′ − bf − ec)u− (c′ − bc + z)] = 0. (2.2)

Now, the aim is to choosea, b, . . . , f in such a way that (2.2) becomes a quadratic equation
for v. There are two cases: either the coefficient ofv3 is zero or not.

Case I. 2d2u2 − 4adu+ 2a2 = 0. In this case the only possibility isa = d = 0, and one
has to consider the two cases separately (i)e = 0 and (ii) e 6= 0.

Case I.i.e = 0. One can always absorbc andf in u by a proper M̈obius transformation,
and hence, without loss of generality, one setsc = 0, andf = 1. Then equation (2.2) takes
the following form,

6v2+ (b′ − b2)v − (u′ − bu− z) = 0. (2.3)

The procedure discussed in the introduction yields the following second-order second degree
Painlev́e-type equation foru(z)

[u′′ + bu′ − (b′ + 2b2)u+ 1
12(b

′ − b2)(b′′ − bb′ − b3)− 2zb − 1]2

= [u+ 1
12(b

′′ − bb′ − b3)]2[24u′ − 24bu+ (b′ − b2)2− 24z] (2.4)

and there exist the following one-to-one correspondence between solutionsv(z) andu(z)

u = v′ + bv v = u′′ + bu′ − (2b′ + b2)u− 2zb − 1

12u+ b′′ − bb′ − b3
. (2.5)

The change of variableu(z) = p(x)y(x)+ q(x), z = z(x) where

f (x) = c1x + c2

R(x) = exp

(
− 5

∫
b(z) dz

)
z = c−4/5

4

(
c4

∫
f −2R−3/5 dx + c5

)
p(x) = 1

24c
−3/5
4 f −1R−1/5

q(x) = 1
24c

3/5
4 R1/5

(∫ {
f 6

[
−1

5
R̈ + 1

25
R−1Ṙ2− 2c1

5f
Ṙ

]2

−24c4/5
4 f −2R−2/5z(x)+ c3f

−2

}
dx + c6

)
(2.6)

cj , j = 1, 2, . . . ,6 are constants anḋR = dR
dx , transforms (2.4) into the following form,

ÿ2 = [A(x)y + B(x)]2[c1(xẏ − y)+ c2ẏ + c3] (2.7)
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whereA(x) andB(x) are given in terms off (x) andR(x). Equation (2.7) was first obtained
by Cosgrove and Scoufis [8] and labelled as SD-V.A.

Case I.ii. e 6= 0. Without loss of generality one can setb = 0 ande = 1. Hence, equations
(1.11) and (2.2) become

u = v′ + c
v + f Av2+ Bv + C = 0 (2.8)

respectively, where

A = 6 B = −(u′ + u2)

C = −(f u′ + f u2− a1u− a0+ 6f 2)

a1 = c − f ′ a0 = c′ + 6f 2+ z.
(2.9)

The discriminant1 of the second equation of (2.8) is

1 = (u′ + u2+ 12f )2− 24(a1u+ a0). (2.10)

If 1 is not a complete square, that is,a1 anda0 are not both zero, then the first equation of
(2.8) and

v = −f u
′′ + (f u− 2a1)u

′ − f u3+ a1u
2− (a′1− 2a0+ 12f 2)u− c′′ − 1

u′′ + uu′ − u3− 12f u− 12c
(2.11)

define a one-to-one correspondence between a solutionv(z) of PI and a solutionu(z) of the
following second degree equation

[2(a1u+ a0)u
′′ − 2a1u

′2+ R2(u)u
′ −Q4(u)]

2

= [2a1u
′ − a1u

2+ (a′1− 2a0)u+ (a′0+ 12f a1)]
21 (2.12)

where

R2(u) = a1u
2− (a′1− 4a0)u− (a′0+ 36f a1)

Q4(u) = a1u
4+ a′1u3+ (a′0+ 24f a1)u

2+ 12(f a′1− 2f ′a1− 2a2
1)u

+12(f a′0− 2f ′a0+ 12f 2a1− 2a0a1).

(2.13)

Note that ifa1 = f = 0, theny = −u solves the following equation

y ′′ − 2yy ′ = 1

2z
(y ′ − y2)+

(
y + 1

2z

)√
(y ′ − y2)2− 24z. (2.14)

The second-order second degree Painlevé-type equation fory(z) was first obtained by Bureau
[2]. If 1 is a complete square, that isa0 = a1 = 0 thenu satisfies PX in [17 p 334].

Case II. 2d2u2− 4adu+ 2a2 6= 0. In this case equation (2.2) can be written as

(v + h)(Av2+ Bv + C) = 0 (2.15)

where

A = 2d2u2− 4adu+ 2a2

B = du′ + d(3e − 2dh)u2+ (d ′ − 3ae − 3bd + 4adh)u− (a′ − 3ab + 2a2h+ 6)

C = (e − dh)u′ + (e2+ 2df − 3deh+ 2d2h2)u2

+(e′ − hd ′ − 2af − 2be − 2cd + 3aeh+ 3bdh− 4adh2)u

−(b′ − b2− ha′ − 2ac + 3abh− 6h− 2a2h2)

(2.16)
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andh is a function ofz. f = h(e − dh) andb, c, d, e satisfy the following equations

(e − 2dh)(h′ + bh− ah2− c) = 0

c′ − bc + z = h(b′ − ha′ − b2− 2ac + 3abh− 6h− 2a2h2).
(2.17)

One has to distinguish two cases: (i)d = 0 and (ii) d 6= 0.

Case II.i. d = 0. When d = 0, without loss of generality, one can chooseb = 0 and
e = 1, then equations (1.11) and (2.2) take the following forms

u = v′ + av2+ c
v + f Av2+ Bv + C = 0 (2.18)

respectively, where

A = 2a2 B = −(3au+ a′ + 2a2f + 6)

C = u′ + u2+ af u+ f (a′ + 2a2f + 6)+ 2ac.
(2.19)

Clearly,a should be different than zero, then (2.17) andf = h yield

c = f ′ − af 2 f ′′ + 6f 2+ z = 0. (2.20)

Then, for these choicesu satisfies the following second degree equation of Painlevé type

[8a3u′′ + 2a2(3au− 7a′ + 6a2f + 6)u′ −Q3(u)]
2 = [2a2u′ − R2(u)]

21 (2.21)

where

1 = −(8a2u′ − a2u2− 2aa1u− a0)

Q3(u) = a3u3+ a2(5a′ + 6a2f + 42)u2+ a[2aa′1− 2a1(2a
′ − 2a2f − 6)+ a0]u

+aa′0− a0(3a
′ − 2a2f − 6)

R2(u) = a2u2+ 2a(a′ + 2a2f − 12)u+ 2a′′ − 3a′2− 12a′ + 4ca3+ 36

a1 = 3a′ + 2a2f + 18

a0 = a′2− 4(a2f − 3)a′ − 4a2(4ac + 3a2f 2+ 6f )+ 36.

(2.22)

Case II.ii. d 6= 0. Without loss of generality, one can seta = 0, d = 1. Thenf = h(e−h)
and the first equation of (2.17) gives

(e − 2h)(h′ + bh− c) = 0. (2.23)

If e = 2h, thenf = h2 and equations (1.11) and (2.2) become

u = v′ + bv + c
(v + h)2 Av2+ Bv + C = 0 (2.24)

respectively, where

A = 2u2 B = u′ + 4hu2− 3bu− 6

C = hu′ + 2h2u2+ (a1− 3bh)u+ a0− 6h

a1 = 2(h′ + bh− c) a0 = −(b′ − b2− 12h)

c′ − bc + z + h(a0− 6h) = 0.

(2.25)

The discriminant1 of the second equation of (2.24) is

1 = (u′ − 3bu− 6)2− 8u2(a1u+ a0). (2.26)
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If 1 is not a complete square, that is,a1 and a0 are not both zero, thenu satisfies the
following second degree equation

[4u(a1u+ a0)u
′′ − 3(2a1u+ a0)u

′2− R2(u)u
′ +Q3(u)]

2

= [3a0u
′ − 2(a′1− ba1)u

2− (2a′0+ ba0− 12a1)u+ 6a0]21 (2.27)

where

R2(u) = 2[(a′1− 3ba1)u
2+ (a′0+ 3ba0− 18a1)u− 6a0]

Q3(u) = 2[3ba′1+ 2a1(a0− 36h− 3b2)]u3

+[12a′1+ 3b(2a′0− ba0)+ 4a0(a0− 36h)]u2+ 12(a′0+ 3ba0)u+ 36a0.

(2.28)

If e 6= 2h, thenc = h′ + bh, f = h(e − h) and equations (1.11) and (2.2) become

u = v′ + bv + c
(v + h)(v + e − h) Av2+ Bv + C = 0 (2.29)

respectively, where

A = 2u2 B = u′ + (3e − 2h)u2− 3bu− 6

C = (e − h)u′ + e(e − h)u2+ (a1− 3be + 3bh)u+ a0− 6(e − h)
a1 = e′ − 2h′ + b(e − 2h) a0 = −(b′ − b2− 6e)

h′′ + 6h2+ z = 0.

(2.30)

The discriminant1 of the second equation of (2.29) is

1 = [u′ − (e − 2h)u2− 3bu− 6]2− 8u2(a1u+ a0). (2.31)

If 1 is not a complete square, that is,a1 and a0 are not both zero, thenu satisfies the
following second degree equation

[4u(a1u+ a0)u
′′ − (7a1u+ 3a0)u

′2− F2(u)u
′ −Q5(u)]

2 = [(a1u− 3a0)u
′ + R3(u)]

21

(2.32)

where

F2(u) = [a′1− 6ba1+ 3a0(e − 2h)]u2+ (a′0+ 3ba0− 24a1)u− 6a0

Q5(u) = a1(e − 2h)2u5− [2(e − 2h)(a′1− ba1)+ 4a2
1 − (e − 2h)2a0]u4

−[3b(2a′1− 7ba1)+ 4a1(2a0+ 6h− 21e)+ 2(e − 2h)(a′0+ 5ba0)]u
3

−[12(a′1− 3ba1)+ 3b(2a′0− ba0)+ 4a0(a0− 15e − 6h)]u2

−12(a′0+ 3ba0− 3a1)u− 36a0

R3(u) = a1(e − 2h)u3+ [2a′1− 5ba1− 3a0(e − 2h)]u2+ (2a′0+ ba0− 18a1)u− 6a0.

(2.33)

If 1 is a complete square, that is,a1 = a0 = 0, thenw = 6/u solves PXXVIII [17, p 340].

3. Painlev́e II

In this section we consider the equation PII. Letv(z) be a solution of PII

v′′ = 2v3+ zv + α. (3.1)
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One finds thatP1 = P2 = 0 andP3 = 2v3 + zv + α by comparing (3.1) with (1.9). Then
equation (1.13) becomes

[2d2u2− 4adu+ 2a2− 2]v3+ [du′ + 3deu2+ (d ′ − 3ae − 3bd)u− (a′ − 3ab)]v2

+[eu′ + (2df + e2)u2+ (e′ − 2af − 2be − 2cd)u− (b′ − b2− 2ac + z)]v
+[f u′ + ef u2+ (f ′ − bf − ec)u− (c′ − bc + α)] = 0. (3.2)

To reduce (3.2) to a quadratic equation forv, there are two cases depending on whether the
coefficient ofv3 is zero or not.

Case I. 2d2u2−4adu+2a2−2= 0. This implies thatd = 0, a2 = 1. One has to consider
the two cases: (i)e = 0, and (ii) e 6= 0 separately.

Case I.i.e = 0. With a proper M̈obius transformation, one can choosec = 0, andf = 1.
Then equations (1.11) and (3.2) take the form of

u = v′ + av2+ bv Av2+ Bv + C = 0 (3.3)

respectively, where

A = −3ab B = 2au+ b0

C = −(u′ − bu− α) b0 = b′ − b2+ z. (3.4)

Whenb 6= 0,u(z) satisfies the following second-order second degree Painlevé-type equation:

[18b2u′′ + 6b(2au− 2b0+ 3z)u′ −Q3(u)]
2

= [4u2− 2a(b0+ 6b2− 3z)u+ 3bb′0− 2b2
0 + 3zb0+ 6aαb]21 (3.5)

where

1 = −[12abu′ − 4u2− 4a(b′ + 2b2+ z)u− b2
0 − 12αab]

Q3(u) = 8u3+ 12a(2b2+ z)u2+ 6(bb′0− b2
0 + 2b2b0+ 2zb0+ 6b4+ 4aαb)u

+3abb0b
′
0− 2ab3

0 + 3azb2
0 − 6αbb0+ 18αb(b2+ z).

(3.6)

When b = 0 the discriminant1 is a complete square,u is a solution of PXXXIV in
[17, p 340].

Case I.ii. e 6= 0. Without loss of generality, one can chooseb = 0 ande = 1. Hence
equations (1.11) and (3.2) become

u = v′ + av2+ c
v + f Av2+ Bv + C = 0 (3.7)

respectively, where

A = 3au B = −(u′ + u2− 2af u+ b0)

C = −[f u′ + f u2+ (a1+ af 2)u+ a0+ f b0]

a1 = f ′ − af 2− c a0 = −(c′ + 2af c − zf + α) b0 = 2ac − z.
(3.8)

The discriminant1 of the second equation of (3.7) is

1 = (u′ + u2+ 4af u+ 2ac − z)2+ 12au(a1u+ a0). (3.9)

If 1 is not a complete square, that is,a1 and a0 are not both zero. Thenu satisfies the
following second degree equation

[6u(a1u+ a0)u
′′ − 2(4a1u+ a0)u

′2+ F3(u)u
′ −Q5(u)]

2 = [2(2a1u− a0)u
′ − R3(u)]

21

(3.10)
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where

F3(u) = 2a1u
3− (3a′1− 11a0+ 16af a1)u

2− (3a′0− 20af a0+ 10a1b0)u− a0b0

Q5(u) = 2a1u
5+ (3a′1− a0+ 16af a1)u

4+ [3a′0+ 12af a′1+ 4(2f 2− 4ac − z)a1

−8af a0]u3+ [b0(3a
′
1+ 28af a1)+ 12af a′0+ 6(2aα + 1)a1

−2a0(20f 2+ 14ac − z)]u2+ [b0(3a
′
0+ 4af a0)

+6a0(2aα + 1)+ 2a1b
2
0]u− a0b

2
0

R3(u) = 2a1u
3− (3a′1+ 4af a1− 5a0)u

2− (3a′0− 8af a0+ 4a1b0)u− a0b0.

(3.11)

If 1 is a complete square, that is,a1 = a0 = 0, thenu satisfies PXXXV [17, p 340].

Case II. 2d2u2− 4adu+ 2a2− 2 6= 0. In this case (3.2) can be written as

(v + h)(Av2+ Bv + C) = 0 (3.12)

where

A = 2d2u2− 4adu+ 2a2− 2

B = du′ + d(3e − 2dh)u2+ (d ′ − 3ae − 3bd + 4adh)u− (a′ − 3ab + 2a2h− 2h)

C = (e − dh)u′ + (e2+ 2df − 3deh+ 2d2h2)u2

+(e′ − hd ′ − 2af − 2be − 2cd + 3aeh+ 3bdh− 4adh2)u

−(b′ − b2− ha′ − 2ac + 3abh+ 2h2− 2a2h2+ z)

(3.13)

h is a function ofz, f = h(e − dh), andb, c, d, e satisfy the following equations

(e − 2dh)(h′ − ah2+ bh− c) = 0

c′ − bc + α = h(b′ − ha′ − b2− 2ac + 3abh+ 2h2− 2a2h2+ z). (3.14)

There are two distinct cases: (i)d = 0 and (ii) d 6= 0.

Case II.i. d = 0. With a proper M̈obius transformation, one can setb = 0, e = 1.
Therefore equations (1.11) and (3.2) become

u = v′ + av2+ c
v + f Av2+ Bv + C = 0 (3.15)

respectively, where

A = −2(a2− 1) B = 3au+ b0

C = −(u′ + u2+ af u+ c0)

b0 = a′ + 2f (a2− 1) c0 = f b0+ 2ac − z.
(3.16)

Thenh = f and equation (3.14) imply

c = f ′ − af 2 f ′′ = 2f 3+ zf − α. (3.17)

WhenA 6= 0, u satisfies the following second-order second degree equation of Painlevé
type:

[8(a2− 1)2u′′ + 2a(a2− 1)(3au− 7a′ + 6f a2− 6f )u′ −Q3(u)]
2

= [2a(a2− 1)u′ − R2(u)]
21 (3.18)
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where

1 = −[8(a2− 1)u′ − (a2+ 8)u2− 2aa1u− a0]

Q3(u) = (a2+ 8)(a2+ 2)u3+ a[(5a2− 14)a′ + 6f (a2− 1)(a2+ 4)]u2

+[2a(a2− 1)(a′1+ 2af a1)− 2a1(2a
2+ 1)a′ + a0(a

2+ 2)]u

+(a2− 1)(a′0+ 2af a0)− 3aa′a0

R2(u) = a(a2− 10)u2+ 2[(a2+ 2)a′ + 2f (a2− 1)(a2− 3)]u

−2(a2− 1)[a′′ + 2c(a2− 3)+ 2az] + 3aa′2

a1 = 3a′ + 2f (a2− 1)

a0 = a′ − 4f (a2− 1)a′ − 12f 2(a2− 1)2− 8(a2− 1)(2ac − z).

(3.19)

Case II.ii. d 6= 0. Without loss of generality we seta = 0, d = 1. Then the first equation
of (3.14) gives

(e − 2h)(h′ + bh− c) = 0. (3.20)

If e = 2h, thenf = h2 and equations (1.11) and (3.2) become

u = v′ + bv + c
(v + h)2 Av2+ Bv + C = 0 (3.21)

respectively, where

A = 2(u2− 1) B = u′ + 4hu2− 3bu+ 2h

C = hu′ + 2h2u2+ (a1− 3bh)u+ a0+ 4h2

a1 = 2(h′ + bh− c) a0 = −(b′ − b2+ 6h2+ z)
c′ − bc + α + h(a0+ 4h2) = 0.

(3.22)

The discriminant1 of the second equation of (3.21) is

1 = (u′ − 3bu+ 6h)2− 8(u2− 1)(a1u+ a0). (3.23)

If 1 is not a complete square, that is,a1 and a0 are not both zero, thenu satisfies the
following second degree equation

[4(u2− 1)(a1u+ a0)u
′′ − 3(2a1u

2+ a0u− a1)u
′2− 2F3(u)u

′ +Q4(u)]
2

= [3(a0u+ a1)u
′ − R3(u)]

21 (3.24)

where

F3(u) = (a′1− 3ba1)u
3+ (a′0+ 3ba0+ 18ha1)u

2− (a′1− 6ha0)u− (a′0+ 6ba0+ 12ha1)

Q4(u) = 2[3b(a′1− 2ba1)+ 2a1(a0+ 18h2+ 3z)]u4− [12h(a′1+ 2ba1)

−4a1(a1+ 6c)− 3b(2a′0− ba0)− 4a0(a0+ 18h2+ 3z)]u3

−3[b(2a′1− 7ba1)+ 4a1(6h
2+ z)+ 4ha′0+ 4a0(5bh− 2c)]u2

+2[6h(a′1− ba1)− 2a1(a1+ 6c)− 3ba′0
−2a0(a0+ 18h2+ 3z − 3b2)]u+ 4[3ha′0− a0(a1+ 6c − 6bh)+ 9h2a1]

R3(u) = 2(a′1− ba1)u
3+ (2a′0+ ba0+ 12ha1)u

2

−(2a′1+ ba1− 6ha0)u− 2(a′0+ 2ba0+ 3ha1).

(3.25)

If e 6= 2h, thenc = h′ + bh andf = h(e − h) and equations (1.11) and (3.2) become

u = v′ + bv + c
(v + h)(v + e − h) Av2+ Bv + C = 0 (3.26)
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respectively, where

A = 2(u2− 1) B = u′ + (3e − 2h)u2− 3bu− 6

C = (e − h)u′ + e(e − h)u2+ (a1− 3be + 3bh)u+ a0− 2e(e − h)
a1 = g′ + bg a0 = −(b′ − b2+ z + 2e2− 2eh+ 2h2)

h′′ − 2h3− zh+ α = 0 g = e − 2h.

(3.27)

The discriminant1 of the second equation of (3.26) is

1 = [u′ − gu2− 3bu+ 2(2e − h)]2− 8(u2− 1)(a1u+ a0). (3.28)

If 1 is not a complete square, that is,a1 anda0 are not both zero, then by using the linear
transformationu = py + q, wherep(z) andq(z) are solutions of the following equations

p′ − 2gpq − 3bp = 0 q ′ − gq2− 3bq + 2(2e − h) = 0 (3.29)

y(z) satisfies the following second degree equation

[F3(y)y
′′ − p4Q2(y)y

′2− p3R3(y)y
′ − p4S6(y)]

2

= [T2(y)y
′ +G4(y)]

2[p2(y ′ − pgy2)2− 2F3(y)] (3.30)

where

F3(y) = 4(p2y2+ 2pqy + q2− 1)(c1y + c0)

Q2(y) = 7pf3y
2+ (3pf2+ 5qf3)y + 3pf1− 5q(f2− 2qc1)

R3(y) = [c′1+ g(3p3f2− 5qc1)]y
3+ [p(pf ′2 + 2p′f2)+ g(4p3f1+ 5qc0)]y

2

+[p(pf ′1 + 2p′f1)+ 4gp3f0]y + p(pf ′0 + 2p′f0)

S6(y) = g2p3f3y
6− [2p2(gf ′3 − 2g′f3)− g2(3qc1− pc0)+ 4p3f 2

3 ]y5

−[2p2(gf ′2 − 2g′f2)+ 4f3(3qc1− pc0)− g2(2p3f1− 5qc0)]y
4

−[2p2(gf ′1 − 2g′f1)+ 4f2(3qc1− pc0)+ 4f3(p
3f1− 5qc0)]y

3

−[2p2(gf ′0 − 2g′f0)+ 4f2(p
3f1− 5qc0)+ 20qc1f1+ 5p3f0f3]y2

−4[2p3f 2
1 − 5qc0f1+ f0(3qc1− pc0)]y − 4f0(2p

3f1− 5qc0)

T2(y) = p[p3f3y
2+ (5qc1− 3pc0)y + 11qc0− 4p3f1]

G4(y) = gp5f3y
4+ p4[2f ′3 − f3(2gq − b)+ 3gpf2]y3

+p2[2p2f ′2 + 8f3(qp
′ − q ′p)+ 2gp3f1

+3gqc0+ 4p2f2(qg + b)]y2+ [4pqc′0− 4(p′q + pq ′)c0

+2(q2− 1)c′1− 4qq ′c1+ 4gp5f0− 4p4f1(gq + b)]y
+2[(q2− 1)c′0− 2qq ′c0+ 2p4f0(gq + b)]

c1 = pa1 c0 = qa1+ a0

f3 = c1

p2
f2 = 2qc1+ pc0

p3
f1 = c1(q

2− 1)+ 2pqc0

p4
f0 = c0(q

2− 1)

p4
.

(3.31)

If 1 is a complete square, thenw = u+1
2 is a solution of PXLV [17, p 342].
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4. Painlev́e III

Let v(z) be a solution of PIII

v′′ = v′2

v
− v

′

z
+ γ v3+ α

z
v2+ β

z
+ δ
v
. (4.1)

Then, equation (1.13) takes the form of:

[d2u2− 2adu+ a2− γ ]v4+
[
du′ + deu2+

(
d ′ − ae − bd + d

z

)
u

−
(
a′ + a + α

z
− ab

)]
v3+

[
eu′ +

(
e′ + e

z

)
u−

(
b′ + b

z

)]
v2

+
[
f u′ − ef u2+

(
f ′ + f

z
+ bf + ce

)
u−

(
c′ + c + β

z
+ bc

)]
v

−[f 2u2− 2cf u+ c2+ δ] = 0.

(4.2)

There are three distinct cases to reduce (4.2) to a quadratic equation inv.

Case I. Ifd2u2− 2adu+ a2− γ 6= 0. Then (4.2) can be written as

(v2+ hv + g)(Av2+ Bv + C) = 0 (4.3)

where
A = d2u2− 2adu+ a2− γ

B = du′ + d(e − dh)u2+
(
d ′ + d

z
− bd − ae + 2adh

)
u

−
(
a′ + a + α

z
− ab

)
− h(a2− γ )

C = (e − dh)u′ − d[dg + h(e − dh)]u2

+
[
e′ + e

z
− h

(
d ′ + d

z
− bd − ae + 2adh

)
+ 2adg

]
u

−
(
b′ + b

z

)
+ h

(
a′ + a + α

z
− ab

)
+ h2(a2− γ )− g(a2− γ )

(4.4)

anda, b, c, d, e, f , g, h satisfy

g(e − dh) = 0 h(e − dh) = f − dg
dgh(e − dh) = f 2− d2g2 dh[dg + h(e − dh)] − dg(e − dh) = ef

g

[
e′ + e

z
− h

(
d ′ + d

z
− bd − ae + 2adh

)
+ 2adg

]
= 2cf

g

[
b′ + b

z
− h

(
a′ + a + α

z
− ab

)
− h2(a2− γ )+ g(a2− γ )

]
= c2+ δ

h

[
e′ + e

z
− h

(
d ′ + d

z
− bd − ae + 2adh

)
+ 2adg

]
+g

(
d ′ + d

z
− bd − ae + 2adh

)
= f ′ + f

z
+ bf + ce

h

[
b′ + b

z
− h

(
a′ + a + α

z
− ab

)
− h2(a2− γ )+ 2g(a2− γ )

]
+g

(
a′ + a + α

z
− ab

)
=
(
c′ + c + β

z
+ bc

)
.

(4.5)
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Hence there are two subcases: (i)e 6= dh and (ii) e = dh.

Case I.i.e 6= dh. Then (4.5) impliesf = g = h = 0, and

c2+ δ = 0 ce = 0
c + β
z
+ bc = 0. (4.6)

Equation (4.6) givesc = β = δ = 0. In the case ofβ = δ = 0, the transformation [11]

w = z
(
v′

v
+ γ 1/2

)
v = w′

γ 1/2w + α + γ 1/2

transforms PIII into

w′′ = 1

z
ww′ (4.7)

which has the first integralzw′ = 1
2w

2+ w + k, k =constant.
There are two subcases which should be considered separately: (1)d = 0 and (2)d 6= 0.

Case I.i-1: d = 0. Then without loss of generality one can setb = 0 ande = 1. With
these choices equations (1.11) and (4.2) become

u = v′ + av2

v
Av2+ Bv + C = 0 (4.8)

respectively, where

A = −z(a2− γ )
B = zau+ za′ + a + α
C = −(zu′ + u).

(4.9)

Note thatA 6= 0, thus the second-order second degree Painlevé-type equation related with
PIII is:

[2z2(a2− γ )2u′′ − F1(u)u
′ −Q3(u)]

2 = [za(a2− γ )u′ − R2(u)]
21 (4.10)

where

1 = −[4z2(a2− γ )u′ − z2a2u2− 2z(zaa′ − a2+ αa + 2γ )u− (za′ + a + α)2]

F1(u) = z(a2− γ )[z(a2− 4γ )u+ zaa′ − 5a2− 3αa + 2γ ]

Q3(u) = γ z2a2u3+ z(γ zaa′ + a4+ αa3− 2γ a2+ 2αγ a + 4γ 2)u2

+[z2a(a2− γ )a′′ − a2(za′ − a)2+ α(a2+ γ )(za′ − a)
+2(αa + γ )2+ γ (2a2+ 4αa + α2)]u

+
(
a′ + 1

z
a + 1

z
α

)
[z2(a2− γ )a′′

−z2aa′2+ z(a2− γ )a′ + α(a2+ γ )+ (α2+ γ )a]

R2(u) = γ zau2− (a3− αa2− 3γ a − γα)u+ (a2− γ )(za′′ + 2a′)

−(za′ + a + α)
(
aa′ − 1

z
αa − 1

z
γ

)
.

(4.11)

As a special case of (4.10), ifa = 0, γ 6= 0 then the transformation

u = e−x
(
y + α2

4γ
x

)
z = ex (4.12)
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transforms (4.10) to the following second degree equation

ÿ = 2(y + a0)ẏ + 2(b1y + b0)
√
ẏ (4.13)

where

a0 = 1− α2

4γ
x b2

1 =
α2

γ
b0 = b1a0.

Equation (4.13) was also obtained in [2].

Case I.i-2. d 6= 0. With a proper M̈obius transformation one can seta = 0 andd = 1.
Hence, equations (1.11) and (4.2) respectively become

u = v′ + bv
v2+ ev Av2+ Bv + C = 0 (4.14)

where

A = u2− γ

B = u′ + eu2−
(
b − 1

z

)
u− 1

z
α

C = eu′ +
(
g1− be + 1

z
e

)
u+ g0− 1

z
αe + γ e2

g1 = e′ + be g0 = −
(
b′ + b − αe

z
+ γ e2

)
.

(4.15)

The discriminant1 of the second equation of (4.14) is

1 =
[
u′ − eu2−

(
b − 1

z

)
u+ 2γ e − 1

z
α

]2

− 4(u2− γ )(g1u+ g0). (4.16)

If g1 and g0 are not both zero, theny = u−q
p

, wherep(z) and q(z) are solutions of the
following equations

p′ − 2epq − p
(
b − 1

z

)
= 0 q ′ − eq2− q

(
b − 1

z

)
+ 2γ e − 1

z
α = 0 (4.17)

satisfies the following second degree Painlevé equation

[pF3(y)y
′′ − pQ2(y)y

′2− R4(y)y
′ + p2S5(y)]

2

= p2[T2(y)y
′ +G3(y)]

2[(y ′ − epy2)2− 2p2F3(y)] (4.18)



Second degree Painlev´e equations 5173

where

F3(y) = 2(c1y + c0)(y
2+ 2a1y + a0)

Q2(y) = 3c1y
2+ (c0+ 5a1c1)y + a1c0+ 2a0c1

R4(y) = ep2c1y
4+ [pc′1+ 2p′c1+ 2ep2(c0− a1c1)]y

3

+[pf ′2 + 2p′f2+ ep2(8a1c0+ a0c1)]y
2

+[pf ′1 + 2p′f1+ 4ep2f0]y + pf ′0 + 2p′f0

S5(y) = [ec′1− 2e′c1+ pe2(c0− a1c1)]y
5

+[ef ′2 − 2e′f2− 4c1(c0− a1c1)+ pe2(a1c0− a0c1)]y
4

+[ef ′1 − 2e′f1− 4pc1(a1c0− a0c1)− 4pf2(c0− a1c1)]y
3

+[ef ′0 − 2e′f0− 4pf2(a1c0− a0c1)− 4pf1(c0− a1c1]y2

−4p[f1(a1c0− a0c1)+ f0(c0− a1c1)]y − 4pf0(a1c0− a0c1)

T2(y) = c1y
2− (c0− 3a1c1)y + 2a0c1− a1c0

G3(y) = [c′1+ c1(eq − 2b)+ epf2]y3

+[f ′2 − 4c1a
′
1+ ep(3a1c0+ a0c1)+ 2f2(eq − b)]y2

+[f ′1 − 2c1a
′
0− 4c0a

′
1+ 2epf0+ 2f1(eq − b)]y

+f ′0 − 2c0a
′
0+ 2f0(eq − b)

a1 = 1

p
q a0 = 1

p2
(q2− γ ) c1 = 1

p
g1 c0 = 1

p2
(qg1+ g0)

f2 = 2a1c1+ c0 f1 = 2a1c0+ a0c1 f0 = a0c0.

(4.19)

If g1 = g0 = 0 andγ 6= 0 thenw = u−√γ
u+√γ is a solution of PXL in [17, p 341]. If

g1 = g0 = 0 andγ = 0 thenw = α
u

is a solution of PXVI in [17, p 335]. It should be
noted that both PXL and PXVI have first integrals [17].

Case I.ii: e = dh. Then the second equation of (4.5) givesf = dg and henced 6= 0.
Without loss of generality one can takea = 0 and d = 1. Thus (4.4) and (4.5) yield
respectively

A = u2− γ

B = u′ −
(
b − 1

z

)
u+ γ e − 1

z
α

C = −(f u2+ g1u+ g0)

g1 = −(e′ + be) g0 = b′ + 1

z
b − α

z
e + γ e2− γf

(4.20)

and

f (g1+ 2c) = 0 e(g1+ c)+ f ′ + 2bf = 0

fg0 = c2+ δ eg0 = f
(
γ e − 1

z
α

)
+ c′ + c + β

z
+ bc = 0.

(4.21)

Thus (1.11) becomes

u = v′ + bv + c
v2+ ev + f . (4.22)
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The discriminant1 of Av2+ Bv + C = 0 is

1 =
[
u′ −

(
b − 1

z

)
u+ γ e − 1

z
α

]2

+ 4(u2− γ )(f u2+ g1u+ g0). (4.23)

If 1 is not a complete square, then one obtains the following the second-order second
degree equation related with PIII

[2(u2− γ )(cu− g0)u
′′ − u(cu− g0)u

′2+ F3(u)u
′ +Q5(u)]

2

= [u(cu− g0)u
′ + R4(u)]

21 (4.24)

where

F3(u) = (u2− γ )(3cb1u+ g′0− 2b1g0+ cb0)

Q5(u) = 8δu5+ 2c(b′1+ b2
1 + 6g0)u

4

−(2g0b
′
1− 2cb′0− b1g

′
0+ 4g2

0 + g0b
2
1 − 4cb0b1− 12γ δ)u3

−(2g0b
′
0+ 2γ cb′1− b0g

′
0+ 16γ cg0+ γ cb2

1 + 2g0b0b1− 2cb2
0)u

2

+(2γg0b
′
1− 2cγ b′0− γ b1g

′
0+ 4γg2

0 − 2cγ b0b1+ 4δγ 2− g0b
2
0)u

+γ (2g0b
′
0+ b0g

′
0+ 4cγg0− cb2

0)

R4(u) = 2ceu4− 2(eg0+ bc)u3+ (g′0+ 2bg0+ b1g0− 2γ ce)u2

+(2cb + 2γ eg0− γ cb1− b0g0)u− γ (g′0+ 2bg0+ cb0)

b1 = −
(
b − 1

z

)
b0 = γ e − 1

z
α

(4.25)

if f = 0. If f 6= 0 then by using the linear transformationu = py + q, wherep(z) and
q(z) are given as follows

p(z) = 1

z
exp

(∫ z

b(s) ds

)
q(z) = −p(z)

∫ z 1

p(s)

[
γ e(s)− α

s

]
ds (4.26)

y(z) solves the following second degree equation of Painlevé type

[F4(y)y
′′ −Q3(y)y

′2− R4(y)y
′ + F4(y)S3(y)]

2

= p2[T2(y)y
′ −G5(y)]

2[y ′2+ 2pF4(y)] (4.27)
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where

F4(y) = 2p(y2+ 2a1y + a0)(fy
2+ 2c1y + c0)

Q3(y) = p(2fy3+ 3f3y
2+ f2y + f1)

R4(y) = (pf ′ + 2p′f )y4+ (pf ′3 + 2p′f3)y
3

+(pf ′2 + 2p′f2)y
2+ (pf ′1 + 2p′f1)y + (pf ′0 + 2p′f0)

S3(y) = 2p3[2fy3+ 3f3y
2+ f2y + f1]

T2(y) = c

p
y2+ (f2− 2c0− 4a1c1)y + f1− 2a1c0

G5(y) = 2epfy5− [f ′ − 2f (eq − b)− 4epf3]y4

−2[f ′3 − 2f a′1− 2f3(eq − b)− epf2]y3

−[f ′2 − 8c1a
′
1− 2f a′0− 2f2(eq − b)− 4epf1]y2

−2[f ′1 − 2c0a
′
1− 2c1a

′
0− 2f1(eq − b)− epf0]y

−[f ′0 − 2c0a
′
0− 2f0(eq − b)]

a0 = 1

p2
(q2− γ ) a1 = q

p
c1 = 1

p
(f q − c) c0 = 1

p2f
(p2c2

1 + δ)
f3 = c1+ f a1 f2 = c0+ 4a1c1+ f a0 f1 = a1c0+ a0c1 f0 = a0c0.

(4.28)

If 1 is a complete square, that is,C = 0, thenec = 0. If e 6= 0 then this case reduces to
the case I.i-2 witha1 = a0 = 0. If e = 0 andγ = 0, thenw = zu is a solution of PIII. If
e = 0 andγ 6= 0, thenw(x) = u−√γ

u+√γ , wherez2 = 2x, is a solution of PV withδ = 0 [11].

Case II.d2u2−2adu+a2−γ = 0 du′ +deu2+ (d ′ −ae−bd+ d
z
)u− (a′ + a+α

z
−ab) 6= 0.

Then (4.2) can be written as:

(v + f )(Av2+ Bv + C) = 0 (4.29)

where

A = au+ a + α
z

B = −
[
u′ +

(
af + 1

z

)
u+ f

(
a + α
z

)]
C = f u2− (f ′ − af 2+ c)+

(
c′ + c + β

z
+ a + α

z
f 2

) (4.30)

and

a2− γ = 0 f (f ′ − af 2− c) = 0

f

(
c′ + c + β

z
+ a + α

z
f 2

)
= c2+ δ. (4.31)

If f 6= 0 then (4.31) implies

c = f ′ − af 2 c′ + c + β
z
+ a + α

z
f 2 = 1

f
(c2+ δ). (4.32)

The discriminant1 of Av2+ Bv + C = 0 reads

1 =
[
u′ +

(
af + 1

z

)
u+ f

(
a + α
z

)]2

− 4

(
au+ a + α

z

)(
f u2− 2cu+ c

2+ δ
f

)
(4.33)
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and equation (1.11) becomes

u = v′ + av2+ c
v + f . (4.34)

Let y = u−q
p

, wherep(z) andq(z) are given as

p(z) = 1

z
exp

[
− a

∫ z

f (s) ds

]
(4.35)

q(z) = a + α
a

[
p(z)− 1

z

]
a 6= 0

q(z) = −α
z

∫ z

f (s) ds a = 0.

(4.36)

Theny(z) is a solution of the following second degree Painlevé-type equation

[F3(y)y
′′ −Q2(y)y

′2− R3(y)y
′ − F3(y)S2(y)]

2 = [Q2(y)y
′ − T4(y)]

2[y ′2− 2pF3(y)]

(4.37)

where

F3(y) = 2(ay + σ)(fy2+ 2c1y + c0)

Q2(y) = (ay + σ)(fy + c1)

R3(y) = a
(
f ′ + p

′

p
f

)
y3+

(
f ′2 +

p′

p
f2

)
y2+

(
f ′1 +

p′

p
f2

)
y + σ

(
c′0+

p′

p
c0

)
S2(y) = 2p[2afy2+ (3ac1+ σf )y + ac0+ σc1]

T4(y) = 2apfy4−
[
a

(
f ′ + p

′

p
f

)
− 2(pf2+ aqf )

]
y3

−
[
σ

(
f ′ + p

′

p
f

)
+ 2a

(
c′1+

p′

p
c1

)
− 2(pf1+ qf2)

]
y2

−
[

2σ

(
c′1+

p′

p
c1

)
+ a

(
c′0+

p′

p
c0

)
− 2(σpc0+ qf1)

]
y

−
[
σ

(
c′0+

p′

p
c0

)
− 2σqc0

]
σ = a + α c1 = 1

p
(f q − c) c0 = 1

p2f
(p2c2

1 + δ)
f2 = σf + 2ac1 f1 = ac0+ 2σc1.

(4.38)

If f = 0, thenw = zu is a solution of the equation(
w′′ + ρw + σ

2

)2
= w2

z2
(w′2+ ρw2+ σw + τ)

ρ = 4γ 1/2(−δ)1/2 σ = 4[α(−δ)1/2− βγ 1/2]

τ = −4(α + γ 1/2)[β + (−δ)1/2].

(4.39)

Equation (4.39) was first obtained in [11] and also in [8] which was denoted as SD-III′.
Whenf = c = 0 then1 is a complete square, andw = zu is a solution of (4.7).
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Case III. d2u2 − 2adu + a2 − γ = 0 and du′ + deu2 + (
d ′ − ae − bd + d

z

)
u −(

a′ + a+α
z
− ab) = 0. Then (1.11) and (4.2) become

u = v′ + av2+ bv + c
ev + f Av2+ Bv + C = 0 (4.40)

respectively, where

A = eu′ +
(
e′ + 1

z
e

)
u−

(
b′ + 1

z
b

)
B = f u′ − ef u2+

(
f ′ + 1

z
f + bf + ce

)
u−

(
c′ + c + β

z
+ bc

)
C = −(f 2u2− 2cf u+ c2+ δ).

(4.41)

and

a2− γ = 0 ae = 0
a + α
z
− ab = 0. (4.42)

The discrete Lie-point symmetry of PIII [11]

v̄ = 1

v
ᾱ = β β̄ = α γ̄ = −δ δ̄ = −γ (4.43)

transforms this case to the case I.i.
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